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Abstract  

Ranking fuzzy numbers is an important aspect of decision making in a fuzzy environment. In fuzzy 
decision making problems, fuzzy numbers must be ranked before an action is taken by a decision 
maker. This article is about ranking Fuzzy numbers and describes a ranking method for ordering 
 fuzzy numbers based on the area of fuzzy numbers. This method is simple in evaluation and can ܴܮ
rank various types of ܴܮ fuzzy numbers and also crisp numbers which are considered to be a 
special class of fuzzy numbers. 

Keywords: fuzzy number, ranking function.   

1. Introduction 

Ranking fuzzy numbers are an important tool in decision making. In fuzzy decision analysis, fuzzy 
quantities are used to describe the performance of alternatives in modeling a real-world problem. 
Most of the ranking procedures proposed so far in the literature cannot discriminate fuzzy 
quantities and some are counterintuitive. As fuzzy numbers are represented by possibility 
distributions, they may overlap with each other, and hence it is not possible to order them. It is true 
that fuzzy numbers are frequently partial order and cannot be compared like real numbers which 
can be linearly ordered. In order to rank fuzzy quantities, each fuzzy quantity is converted into a 
real number and compared by defining a ranking function from the set of fuzzy numbers to a set of 
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real numbers which assign a real number to each fuzzy number where a natural order exists. 
Ranking fuzzy numbers were first proposed by Jain [29] for decision making in fuzzy situations by 
representing the ill-defined quantity as a fuzzy set. Since then, various procedures to rank fuzzy 
quantities are proposed by various researchers. Bortolan and Degani [9] reviewed some of these 
ranking methods [3,7-10,23,28-30,40,57-59] for ranking fuzzy subsets. Chen [12] presented 
ranking fuzzy numbers with maximizing set and minimizing set. Dubois and Prade [24] presented 
the mean value of a fuzzy number. Lee and Li [34] presented a comparison of fuzzy numbers based 
on the probability measure of fuzzy events. Delgado et al. [21] presented a procedure for ranking 
fuzzy numbers. Campos and Muñoz [20] presented a subjective approach for ranking fuzzy 
numbers. Kim and Park [32] presented a method of ranking fuzzy numbers with index of optimism. 
Yuan [61] presented a criterion for evaluating fuzzy ranking methods. Heilpern [27] presented the 
expected value of a fuzzy number. Saade and Schwarzlander [45] presented ordering fuzzy sets 
over the real line. Liou and Wang [36] presented ranking fuzzy numbers with integral value. 
Choobineh and Li [18] presented an index for ordering fuzzy numbers. Chang and Lee [11] 
presented ranking of fuzzy sets based on the concept of existence. Since then several methods have 
been proposed by various researchers which includes ranking fuzzy numbers using area 
compensation, distance method, maximizing and minimizing set, decomposition principle, and 
signed distance [4, 17, 25, 60]. Wang and Kerre [51, 52] classified all the above ranking procedures 
into three classes. The first class consists of ranking procedures based on fuzzy mean and spread 
[3,10,18,20,25,36,57-59], and second class consists ranking procedures based on fuzzy scoring 
[12,28-30,32,49], whereas the third class consists of methods based on preference relations 
[7,8,21,23,31,41,45,61] and concluded that the ordering procedures associated with first class are 
relatively reasonable for the ordering of fuzzy numbers specially the ranking procedure presented 
by Adamo [3] which satisfies all the reasonable properties for the ordering of fuzzy quantities. The 
methods presented in the second class are not doing well and the methods [31, 41,45,61] which 
belong to class three are reasonable. Later on, ranking fuzzy numbers by preference ratio [39], left 
and right dominance [15], fuzzy distance measure [47], area between the centroid point and 
original point [19], preference weighting function expectations [37], sign distance [1], fuzzy 
simulation analysis method [46], an area method using radius of gyration [22], distance 
minimization [6], and fuzzy risk analysis based on the ranking of generalized trapezoidal fuzzy 
numbers [13]. Garcia and Lamata [26] modified the index of Liou and Wang [36] for ranking fuzzy 
numbers. The development in ranking fuzzy numbers can also be found in [2,33-53-16-48-55-54-
50-14-35-56–5]. Most of the methods presented above cannot discriminate fuzzy numbers, and 
some methods do not agree with human intuition, whereas some methods cannot rank crisp 
numbers which are a special case of fuzzy numbers. In this paper, a new method is proposed which 
is based on the area of fuzzy numbers. The work is organized as follows.  

Section 2 introduces the basic concepts and definitions of fuzzy numbers briefly. Section 3 presents 
the proposed new method. In Section 4, the proposed method has been explained with examples 
and shows the results of comparing our method to others. Finally, the conclusions of the work are 
presented in Section 6. 
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2. Arithmetic on fuzzy numbers  
In this section we review some basic definitions and notations of fuzzy set which is taken 
from [38, 42, 44]. 
Definition 2.1: Let ࡾ be the real line, then a fuzzy set ܣሚ in ℝ is defined to be a set of ordered 
pairs ܣሚ = ൛൫ߤ,ݔ෨(ݔ)൯หݔ ∈ ℝൟ, where ߤ෨(ݔ) is called the membership function for the fuzzy 
set. The membership function maps each element of ℝ to a membership value between 0 
and 1. 
Definition 2.2: The support of a fuzzy set ̅ܣ is defined as fallow:  

ሚ൯ܣ൫ݑݏ = ݔ} ∈ ℝ|ߤ෨(ݔ) > 0} 
Definition 2.3: The core of a fuzzy set is the set of all points ݔ in ℝ with ߤ෨(ݔ) = 1.   
Definition 2.4: A fuzzy set ܣሚ is called normal if its core is nonempty. In other words, ther is 
at least one point ߳ݔℝ with ߤ෨(ݔ) = 1.    
Definition 2.5: The ߙ–cut or  ߙ–level set of a fuzzy set is a crisp set defined as follows: 

ఈܣ = ݔ} ∈ ℝ|ߤ෨(ݔ) >  {ߙ

Definition 2.6: A fuzzy set ܣሚon ℝ is convex, if for any ݔ, ߣ ℝ and߳ݕ ∈ [0,1], we have 

ݔߣ)෨ߤ + (1− (ݕ(ߣ ≥  {(ݕ)෨ߤ,(ݔ)෨ߤ}݊݅݉
Definition 2.7: A fuzzy number ܣሚ is a fuzzy set on the real line that satisfies the condition of 
normality and convexity. 
Definition 2.8: A fuzzy number ܣሚ on ℝ is said to be ܴܮ fuzzy number, if there exist real 
numbers and ݏ, ݐ ≥ 0 such that 

(ݔ)ߤ = ൞
ܮ ቀ
݉ − ݔ
ݏ

ቁ , ݔ ≤ ݉,

ܴ ቀ
ݔ − ݉
ݐ

ቁ , ݔ ≥ ݉.
 

in which (ݔ)ܮ and ܴ(ݔ) are continues and non decreasing functions on the real numbers line. We 
denote a ܴܮ fuzzy number ܣሚ by three real numbers ݏ, ሚܣ and ݉ as ݐ = 〈݉, ,ݏ ோ〈ݐ , whose meaning are 
defined in Figure 1. We also denote the set of all ܴܮ fuzzy numbers with F(ℝ).   

 
 
 
 
 
                                  1 
 
 ܴ                                       ܮ                                                   
 
 
 
                                                                                  ݉ 

Figure 2.1 
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Definition 2.9: Let ܣሚ = 〈݉ ݏ, , ෨ܤ 〉ோ andݐ = 〈݉ , ,ݏ  .ℝ߳ݔ 〉ோ be two triangular numbers andݐ
Summation and multiplication of fuzzy numbers defined as [43]: 

ሚܣݔ = ൜
݉ݔ〉 ݏݔ, 〉ோݐݔ, ݔ   , ≥ 0        
ݐݔ−,݉ݔ〉 〉ோݏݔ−, ݔ   , < 0   

ሚܣ + ෨ܤ = 〈݉ + ݉ ݏ, + ,ݏ ݐ + 〉ோݐ   

ሚܣ − ෨ܤ = 〈݉ −݉ ݏ, − ݐ , ݐ − 〉ோݏ   

ሚܣ ≤ ෨ܤ    if and only if ݉ ≤ ݉ ,݉ − ݏ ≤ ݉ − ݏ ,݉ ݐ + ≤ ݉ + ݐ   

Definition 2.10: We let 0෨ = 〈0,0,0〉ோ  as a zero ܴܮ o fuzzy number. 

Remark 2.1: ܣሚ ≥ 0෨  if and only if ݉ ≥ 0 ,݉ − ݏ ≥ 0,݉ + ݐ ≥ 0.  

Remark 2.2: ܣሚ ≤ ෨ܤ  if and only if −ܣሚ ≥ ෨ܤ− . 

3. Consstruction of a new method for ranking of fuzzy number 

Here, we counstruct a new ranking system for ܴܮ fuzzy numbers which is very realistic and 
efficient and then introduce a new algorithm for ranking ܴܮ fuzzy numbers.  

For any ܴܮ fuzzy number ܣሚ = 〈݉ , ݏ , 〉ோݐ , define: 

ሚܣ  = ݉ +
1
2
ܪ ሚ௨ܣ   , = ݉ +

1
2
 ௨ 3-1ܪ

where ܪ and ܪ௨ are defined as fallows: 

ܪ =
∫ ଵߙ݀(ݔ)ଵିܮ


∫ ଵߙ݀(ݔ)ଵିܮ
 + ∫ ܴିଵ(ݔ)݀ߙଵ



 

௨ܪ =
∫ ܴିଵ(ݔ)݀ߙଵ


∫ ଵߙ݀(ݔ)ଵିܮ
 + ∫ ܴିଵ(ݔ)݀ߙଵ



 

Suposs that ܣሚ = 〈݉ , ݏ , 〉ோݐ  and ܤ෨ = 〈݉ ݏ, , 〉ோݐ  be two ܴܮ fuzzy numbers. Let  

തܴ൫ܣሚ,ܤ෨൯ = ሚ௨ܣ − ෨൯ܤ,ሚܣ෨௨,   ܴ൫ܤ = ሚܣ − -෨ (3ܤ
2) 

where ܣሚ, ܤ෨, ܣሚ௨ and ܤ෨௨ are defined in (3-1). 

Lemma 3-1: Assume ܣሚ = 〈݉ , ݏ , ෨ܤ 〉ோ andݐ = 〈݉ , ݏ ,  fuzzy numbers. Then we ܴܮ 〉ோ be twoݐ
have: 

തܴ൫ܣሚ,ܤ෨൯ = − തܴ൫ܤ෨ ሚ൯ܣ, = തܴ൫−ܤ෨  ሚ൯ܣ−,
ܴ൫ܣሚ,ܤ෨൯ = −ܴ൫ܤ෨ ሚ൯ܣ, = ܴ൫−ܤ෨  ሚ൯ܣ−,

(3-
3) 
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 Proof. It is straighforward from (3-2). ∎ 

Definition 3.1: Assume ܣሚ = 〈݉ , ݏ , ෨ܤ 〉ோ andݐ = 〈݉ ݏ, ,  fuzzy numbers and ܴܮ 〉ோ be twoݐ
ܴ൫ܤ෨ ሚ൯ܣ, ≥ 0. The relation ≺ and ≈ on F(ℝ) are defined as follow: 

ሚܣ ≈ ෨ܤ  If and only if ܴ൫ܤ෨ ሚ൯ܣ, = തܴ൫ܣሚ,ܤ෨൯ 

ሚܣ ≺ ෨ܤ  if and only ܴ൫ܤ෨ ሚ൯ܣ, > തܴ൫ܣሚ,ܤ෨൯ 

Remark 3.1: We denot ܣሚ ≼ ෨ܤ  if and only if ܣሚ ≈ ෨ܤ  or ܣሚ ≺ ෨ܤ . Than ܣሚ ≼ ෨ܤ  if and only if ܴ൫ܤ෨ ሚ൯ܣ, ≥
തܴ൫ܣሚ,ܤ෨൯. Also ܣሚ ≺ ෨ܤ  if and only if ܤ෨ ≻   .ሚܣ

Lemma 3.2: Suppose ܣሚ ≺ ෨ܤ . Then it can b e proved that −ܣሚ ≻ ෨ܤ− . 

Proof. Since , we have: 

ܴ൫ܤ෨ ሚ൯ܣ, > തܴ൫ܣሚ,ܤ෨൯ 

 So by use of lemma 3-1, we have: 

ܴ൫−ܣሚ,−ܤ෨൯ > തܴ൫−ܤ෨  ሚ൯ܣ−,

Now from Definition 3.1 we obtained −ܤ෨ ≺  ∎ .ሚܣ−

Lemma 3.3: Assume ܣሚ,ܤ෨  and ܥሚ be three ܴܮ fuzzy numbers. Then the following relations are holde: 

i. ܣሚ ≈      ,ሚ (reflexivity)ܣ ሚ, for everyܣ
ii. If ܣሚ ≈ ෨ܤ , then ܤ෨ ≈  ,ሚ  (symmetry)ܣ

iii. If ܣሚ ≈ ෨ܤ  and ܤ෨ ≈ ሚܣ ሚ, thenܥ ≈ ሚܥ  (transitivity). 

Proof: First part is obvious, because  

ሚܣ  ≈ ሚܣ ⟺ ܴ൫ܣሚ,ܣሚ൯ = തܴ൫ܣሚ,ܣሚ൯ ⟺ ሚܣ − ሚܣ = ሚ௨ܣ −  ሚ௨ܣ

Now for symmetry proporty, assume that ܣሚ ≈ ෨ܤ , then  

ሚܣ ≈ ෨ܤ ⟺ ܴ൫ܤ෨ ሚ൯ܣ, = തܴ൫ܣሚ,ܤ෨൯ ⟺ ෨ܤ ሚܣ− = ሚ௨ܣ −  ෨௨ܤ

Since we can rewrite ܤ෨ − ሚܣ = ሚ௨ܣ − ሚܣ ෨௨ as aܤ − ෨ܤ = ෨௨ܤ −  ሚ௨, thenܣ

ሚܣ ≈ ෨ܤ ⟺ ሚܣ − ෨ܤ = ෨௨ܤ − ሚ௨ܣ ⟺ ܴ൫ܣሚ,ܤ෨൯ = തܴ൫ܤ෨ ⟺ሚ൯ܣ, ෨ܤ ≈  ሚܣ

For trancivity proporty, assume that ܣሚ ≈ ෨ܤ  andܤ෨ ≈ ሚܣ ሚ. Hence, fromܥ ≈ ෨ܤ  we have: 

ܴ൫ܤ෨ ሚ൯ܣ, = തܴ൫ܣሚ,ܤ෨൯ ܤ ݎ෨ − ሚܣ = ሚ௨ܣ  ෨௨ (3-4)ܤ−

Also from ܤ෨ ≈  :ሚ we haveܥ

ܴ൫ܥሚ,ܤ෨൯ = തܴ൫ܤ෨ ሚܥ ݎ ሚ൯ܥ, − ෨ܤ = ෨௨ܤ −  ሚ௨ (3-5)ܥ
Then (3-4) and (3-5) yeild: 
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ሚܥ − ሚܣ = ሚ௨ܣ − ሚ௨ܥ  (3-6) 

Thus, ܴ൫ܥሚ,ܣሚ൯ = തܴ൫ܣሚ,ܥሚ൯ or equvalently we have ܣሚ ≈  ∎ .ሚܥ

The above lemma shows that the relation  is an equvalence relation on ࡲ(ℝ).  

We now discusse the topic of order relations and denote this subject which is necessary for future 
works. The reader will find it helpful to keep in mind that a partial order relation is valid (as we 
prove it below) by Definition 3.1 on ࡲ(ℝ). 

Lemma 3.4: Let ܣሚ,ܤ෨ ∈   .(ℝ)ࡲ The relation ≼ is a partial order on .(ℝ)ࡲ

Proof: In fact, we need to prove the below triple proporties. 

i. ܣሚ ≼      ,ሚ (reflexivity)ܣ ሚ, for everyܣ

ii. If ܣሚ ≼ ෨ܤ  and ܤ෨ ≼ ሚܣ ሚ, thenܣ ≈ ෨ܤ   (symmetry), 

iii. If ܣሚ ≼ ෨ܤ  and ܤ෨ ≼ ሚܣ ሚ, thenܥ ≼  .ሚ (transitivity)ܥ

 the reflexivity proporty is valid, because 

ሚܣ ≼ ሚܣ ⟺ ܴ൫ܣሚ,ܣሚ൯ ≥ തܴ൫ܣሚ,ܣሚ൯⟺ ሚܣ − ሚܣ ≥ ሚ௨ܣ −  ሚ௨ܣ

For symmetry proporty, assume that ܣሚ ≼ ෨ܤ  and ܤ෨ ≼  ሚ, thenܣ

ቊ
ሚܣ ≼ ෨ܤ ⟺ ܴ൫ܤ෨ ሚ൯ܣ, ≥ തܴ൫ܣሚ,ܤ෨൯ ⟺ ෨ܤ − ሚܣ ≥ ሚ௨ܣ − ෨௨ܤ
෨ܤ ≼ ሚܣ ⟺ ܴ൫ܤ෨ ሚ൯ܣ, ≤ തܴ൫ܣሚ,ܤ෨൯ ⟺ ෨ܤ − ሚܣ ≤ ሚ௨ܣ − ෨௨ܤ

⟹ ቊܣ
ሚ ≼ ෨ܤ ⟺ ෨ܤ − ሚܣ ≥ ሚ௨ܣ − ෨௨ܤ
෨ܤ ≼ ሚܣ ⟺ ෨ܤ − ሚܣ ≤ ሚ௨ܣ − ෨௨ܤ

 

Now since the partial order exsist on ℝ, therfore it follows that ܤ෨ − ሚܣ = ሚ௨ܣ − ෨ܤ෨௨ or ܴ൫ܤ ሚ൯ܣ, =
തܴ൫ܣሚ,ܤ෨൯. Hence we obtained ܣሚ = ෨ܤ .    

Finally, for transivity proporty, assume that ܣሚ ≼ ෨ܤ  and ܤ෨ ≼ ሚܣ ሚ. Sinceܥ ≼ ෨ܤ  we have: 

   ܴ൫ܤ෨ ሚ൯ܣ, ≥ തܴ൫ܣሚ,ܤ෨൯ ⟹ ෨ܤ − ሚܣ ≥ ሚ௨ܣ −  ෨௨  (3-7)ܤ

Also from ܤ෨ ≼  :ሚ we haveܥ

ܴ൫ܥሚ,ܤ෨൯ ≥ തܴ൫ܤ෨ ⟹ሚ൯ܥ, ሚܥ − ෨ܤ ≥ ෨௨ܤ −  ሚ௨ (3-8)ܥ

The equalityes (3-7) and (3-8) yield: 

ሚܥ − ሚܣ ≥ ሚ௨ܣ − ሚ௨ܥ ⟹ ܴ൫ܥሚ,ܣሚ൯ ≥ തܴ൫ܣሚ,ܥሚ൯, (3-9) 

             It follows that ܣሚ ≼  ∎ .ሚܥ

Remark 3.3: We emphasis that the relation is a linear order on ࡲ(ℝ) too, beause any two elements 
in ࡲ(ℝ) are comparable by this relation. 
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Lemma 3.5: If ܣሚ ≼ ෨ܤ  and ܥሚ ≼ ሚܣ ෩, thenܦ + ሚܥ ≼ ෨ܤ +  .෩ܦ

Proof. Since ܣሚ ≼ ෨ܤ  and ܥሚ ≼  :෩, the following relations are holdeܦ

ܴ൫ܤ෨ ሚ൯ܣ, ≥ തܴ൫ܣሚ,ܤ෨൯ ⟹ ෨ܤ − ሚܣ ≥ ሚ௨ܣ −  ෨௨ (3-10)ܤ

ܴ൫ܦ෩,ܥሚ൯ ≥ തܴ൫ܥሚ,ܦ෩൯ ⟹ ෩ܦ − ሚܥ ≥ ሚ௨ܥ − ෩௨ܦ  (3-11) 

From (3-10) and (3-11), we obtained: 

൫ܤ෨ + ෩൯ܦ − ൫ܣሚ + ሚ൯ܥ ≥ ൫ܣሚ௨ + ሚ௨൯ܥ − ൫ܤ෨௨ ෩௨൯ܦ+ ⇒ ܴ൫ܤ෨ ሚܣ,෩ܦ+ + ሚ൯ܥ ≥ തܴ൫ܣሚ + ෨ܤ,ሚܥ  ෩൯ (3-12)ܦ+

It follows that ܣሚ + ሚܥ ≼ ෨ܤ +  ∎ .෩ܦ

Algourithm 3.1: For two  fuzzy numbers  ܣሚ and ܤ෨ , assume that ܤ෨ ≥ ෨ܤሚ. Compute ܴ൫ܣ ሚ൯ܣ, = ෨ܤ −  ሚܣ
and തܴ൫ܣሚ,ܤ෨൯ = ሚ௨ܣ ෨ܤ ෨௨ (withܤ− ≥ ෨ܤሚ, it is obvious that ܴ൫ܣ ሚ൯ܣ, ≥ 0).  

Let ݀ = ܴ൫ܤ෨ ሚ൯ܣ, − തܴ൫ܣሚ,ܤ෨൯. Then 

i) If ݀ = 0, then ܣሚ ≈ ෨ܤ , 
ii) If ݀ > 0, then ܣሚ ≺ ෨ܤ  else ܣሚ ≻ ෨ܤ . 

4. Numerical examoles 

Here we present some examples to illustrate the advantages of our method and compare our 
method with the others. 

Example 4.1: Now for simplicity, consider the following trangular fuzzy numbers: 
ܣ :1 ݐ݁ݏ = ܤ,(0.5,0.1,0.5) = ܥ,(0.7,0.3,0.3) = (0.9,0.5,0.1)        
ܣ:2 ݐ݁ݏ = ܤ,(0.4,0.7,0.1,0.2) = ܥ,(0.7,0.4,0.2) = (0.7,0.2,0.2) 

 Fuzzy 
numbers Set 1 Set 2 

New method 
 ܣ
 ܤ
 ܥ

ܴ൫ܤ෨ ሚ൯ܣ, > തܴ൫ܣሚ,ܤ෨൯ 
ܴ൫ܥሚ,ܤ෨൯ > തܴ൫ܤ෨  ሚ൯ܥ,
ܴ൫ܥሚ,ܣሚ൯ > തܴ൫ܣሚ,ܥሚ൯ 

ܣ ≺ ܤ ≺  ܥ

ܴ൫ܤ෨ ሚ൯ܣ, > തܴ൫ܣሚ,ܤ෨൯ 
ܴ൫ܥሚ,ܤ෨൯ > തܴ൫ܤ෨  ሚ൯ܥ,
ܴ൫ܥሚ,ܣሚ൯ > തܴ൫ܣሚ,ܥሚ൯ 

ܣ ≺ ܤ ≺  ܥ

Choobineh and Li 
 ܣ
 ܤ
 ܥ

0.333 
0.50 

0.667 
ܣ ≺ ܤ ≺  ܥ

0.458 
0.583 
0.667 

ܣ ≺ ܤ ≺  ܥ

Yager 
 ܣ
 ܤ
 ܥ

0.6 
0.7 
0.8 

ܣ ≺ ܤ ≺  ܥ

0.575 
0.65 
0.7 

ܣ ≺ ܤ ≺  ܥ

Chen 
 ܣ
 ܤ
 ܥ

0.3375 
0.50 

0.667 
ܣ ≺ ܤ ≺  ܥ

0.4315 
0.5625 
0.625 

ܣ ≺ ܤ ≺  ܥ
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Baldwin and Guild 
 ܣ
 ܤ
 ܥ

0.3 
0.33 
0.44 

ܣ ≺ ܤ ≺  ܥ

0.27 
0.27 
0.37 

ܣ ∽ ܤ ≺  ܥ

Chu and Tsao 
 ܣ
 ܤ
 ܥ

0.299 
0.350 

0.3993 
ܣ ≺ ܤ ≺  ܥ

0.2847 
0.32478 

0.35 
ܣ ≺ ܤ ≺  ܥ

Yao and Wu 
 ܣ
 ܤ
 ܥ

0.6 
0.7 
0.8 

ܣ ≺ ܤ ≺  ܥ

0.575 
0.65 
0.7 

ܣ ≺ ܤ ≺  ܥ

Cheng distance 
 ܣ
 ܤ
 ܥ

0.79 
0.8602 
0.9268 

ܣ ≺ ܤ ≺  ܥ

0.7577 
0.8149 
0.8602 

ܣ ≺ ܤ ≺  ܥ

Cheng CV uniform 
distribution 

 ܣ
 ܤ
 ܥ

0.0272 
0.0214 
0.0225 

ܤ ≺ ܥ ≺  ܣ

0.0328 
0.0246 
0.0095 

ܥ ≺ ܤ ≺  ܣ

Cheng CV proportional 
distribution 

 ܣ
 ܤ
 ܥ

0.0183 
0.0128 
0.0137 

ܤ ≺ ܥ ≺  ܣ

0.026 
0.0146 
0.0057 

ܥ ≺ ܤ ≺  ܣ
  

5. Conclusion  

In this paper we proposed a method that ranks ܴܮ fuzzy numbers using a simple and naïve 
maner. This method ranks ܴܮ fuzzy numbers as well as triangular and trapezoidal fuzzy 
numbers. Also the defined ranking function, ranks crisp numbers which are special case of fuzzy 
numbers, whereas methods proposed by Cheng and Chu cannot rank crisp numbers as their 
centroid formulae are undefined for crisp numbers. This method which is simple in calculation 
not only gives satisfactory results to well-defined problems, but also gives a correct ranking 
order to problems, whereas Yager index, Fortemps and Roubens, Liou and Wang, and Chen and 
Lu indexes failed to discriminate fuzzy numbers, and this method also agrees with human 
intuition.  
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